--年--月--日 (--:--)

スポンサーサイト

上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。

2012年07月15日 (20:52)

無双PS原理「逆」ガウス平面に頭(上丹田)ー胸(中丹田)ー肚(下丹田)を加えた

画像は以下を見られたい。
http://ameblo.jp/neomanichaeism/entry-11303219941.html


無双PS原理「逆」ガウス平面に頭(上丹田)ー胸(中丹田)ー肚(下丹田)を加えた

テーマ:無双PS原理

< 無双PS原理「逆」ガウス平面>

  陰・凹i(-i)・光子:「天」:頭・他者:空間形式
              |
              |
              |
  Ⅱ物質科学     |    Ⅰ気的身体
              |
              |
-1____太極・MP・胸・母権______+1
無機物          |           有機体・生命体
「自我」          |             「個」
              |
  Ⅲ欲望/感情   |     Ⅳ精神
              |
              |
 陽・凸i(i)・重力子:「地」:肚・自己:時間形式:父権


参考:以下のオイラーの公式に関する記事は陰陽が螺旋回転するのを説明するもの数式を提示していると思われる。これで、螺旋形状をもつ有機体、生命体、あるいは、宇宙等を哲学・数学的に説明できよう。

2009年10月12日月曜日
オイラーの公式

y=e^(θi)について、

θ=πのとき、オイラーの公式

e^(πi)=-1

が成り立つ。


y=e^(θi)

について、θを変化させて電卓で計算してみた。



y=e^(θi)

のθを変化させると、

 x軸:実数

 y軸:虚数

の複素平面上で、
yはくるくる回転することが分かった。

このθを軸にして、


x軸:y=e^(θi)の実数部分

y軸:y=e^(θi)の虚数部分

z軸:θ

の3軸の3次元座標上で、yの値を考えると、

くるくる回転がθ軸方向に引き延ばされて、らせん状となることが予想された。


また、計算してみると、オイラーの公式に似た別バージョンの等式があることが分かった。

e^(0i) -1=0

e^(π/2)i -i=0

e^(3π/2)i +i=0

e^(2πi) -1=0





y=e^(θi)のθを変化させたときの値を、3次元空間上にプロットしてみた。

やはりらせん状になった。



投稿者 kf33 時刻: 2:16
http://poic-kf33.blogspot.jp/2009/10/blog-post_12.html

PoIC -k-
スポンサーサイト

コメント

コメントの投稿

サイト管理者にのみ通知する

トラックバックURL

http://sophio.blog19.fc2.com/tb.php/1844-f3851e62
プロフィール

sophio・scorpio

  • Author:sophio・scorpio
  • 以下が、宇宙母船です。
    http://ameblo.jp/neomanichaeism
最近の記事
最近のコメント
最近のトラックバック
月別アーカイブ
カテゴリー
ブロとも申請フォーム

Appendix


ブログ内検索
RSSフィード
リンク
このブログをリンクに追加する
上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。